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Abstract: Let G = (V,E) be a graph and f : V → {0, 1, 2} be a weak Roman
dominating function on G. f is called a restrained weak Roman dominating func-
tion, if each vertex u ∈ V with f(u) = 0 is adjacent to another vertex v ∈ V such
that f(v) = 0. The weight of a restrained weak Roman dominating function f is

defined as w(f) = f(V ) =
∑
v∈V

f(v). The minimum weight of a restrained weak

Roman dominating function on G is called the restrained weak Roman domination
number of G and is denoted by γrr(G).
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1. Introduction

Amongst the many areas of research in Mathematics, the ones that can be
categorized under graph theory have attracted the interest of many a researcher,
owing to the adaptability and the versatility of the subject. A wide variety of
topics of research in graph theory have fascinated the minds of serious researchers
and one among them is the domination in graphs Ore [13]. Let G = (V,E) be a
graph. A dominating set D is a subset of V, such that every vertex in V is either in
D or is adjacent to some vertex in D. The cardinality of a minimum dominating
set is called the domination number of G and is denoted by γ(G). The set D is
said to dominate V . The domination in graphs have been extensively studied, a
good account of which can be found in Haynes [7]. G. S. Domke et al. [4] defined a
variant of the domination in graphs called the restrained domination. For a graph
G = (V,E), they defined a restrained dominating set as a set S ⊆ V with the
property that each vertex in V \S is adjacent to a vertex in S as well as another
vertex in V \S. The cardinality of the minimum restrained dominating set on G
is called the restrained domination number of G. A number of results have been
produced involving this parameter, a few of which can be found in [2, 5, 6, 21].
Independent of the domination in graphs in conception, but not in its existence,
motivated by an article by Ian Stewart [20] on the strategy of the Roman emperor
Constantine, the Great, who ruled the Roman empire during the 4th century AD
to guard the territories of his empire, Cockayne et al. [3] defined a new parameter
called the Roman domination number. For a graph G = (V,E), they defined a
Roman dominating function (RDF) as a function f : V → {0, 1, 2} such that for
any vertex v ∈ V for which f(v) = 0, there exists a vertex u ∈ V adjacent to
v, for which f(u) = 2. The weight of a Roman dominating function f defined

on G = (V,E), is defined as w(f) = f(V ) =
∑
v∈V

f(v). The minimum weight of a

Roman dominating function on G is called the Roman domination number of G and
is denoted by γR(G). The Roman dominating function with weight γR(G) is called
the γR-function. Ever since it was proposed, the Roman domination in graphs has
attracted the attention of researchers and several results have been published on
this topic, which include [10, 12, 16, 17]. Henning and Hedetniemi [8] defined a new
parameter, very similar to the Roman domination number, called the weak Roman
domination number, as follows. Let G = (V,E) be a graph and f : V → {0, 1, 2}
be a function. A vertex u ∈ V with f(u) = 0 is said to be undefended if it is not
adjacent to any vertex v ∈ V such that f(v) > 0. The function f : V → {0, 1, 2}
is called a weak Roman dominating function (WRDF), if for each vertex u ∈ V for
which f(u) = 0, there exists a vertex v ∈ V adjacent to it such that the function



Restrained Weak Roman Domination in Graphs 275

f ′ : V → {0, 1, 2} defined by f ′(u) = 1, f ′(v) = f(v) − 1, f ′(w) = f(w) for all
w ∈ V \{u, v}, has no undefended vertex. The weight of a weak Roman dominating

function f on a graph G = (V,E) is defined as w(f) = f(V ) =
∑
v∈V

f(v). The

minimum weight of a weak Roman dominating function defined on a graph G
is called the weak Roman domination number of G and is denoted by γr(G). A
weak Roman dominating function on G with weight γr(G) is called a γr-function
on G. Many researchers have studied the parameter weak Roman domination
number. Some results produced on this parameter can be found in [11, 14, 15, 18].
Motivated by the definition of restrained domination, P. Roushini Leely Pushpam
and S. Padmapriea [19] defined the restrained Roman domination in graphs as
follows. Let G = (V,E) be a graph and f : V → {0, 1, 2} be a Roman dominating
function on G. f is called a restrained Roman dominating function, if each vertex
u ∈ V with f(u) = 0 is adjacent to a vertex v ∈ V with f(v) = 0. The weight of

a restrained Roman dominating function f is defined as w(f) = f(V ) =
∑
v∈V

f(v).

The minimum weight of a restrained Roman dominating function is called the
restrained Roman domination number of G and is denoted by γrR(G). A restrained
Roman dominating function on G with weight γrR(G), is called a γrR-function on
G. Contributions to finding the restrained Roman domination number of graphs,
are included in [1, 9].

Extending the concept of restrained Roman domination number, we define the
restrained weak Roman domination number of a graph as follows. Let G = (V,E)
be a graph and f : V → {0, 1, 2} be a weak Roman dominating function on G. f
is called a restrained weak Roman dominating function (rWRDF), if each vertex
u ∈ V with f(u) = 0 is adjacent to a vertex v ∈ V with f(v) = 0. The weight
of a restrained weak Roman dominating function f is defined as w(f) = f(V ) =∑
v∈V

f(v). The minimum weight of a restrained weak Roman dominating function

is called the restrained weak Roman domination number of G and is denoted by
γrr(G). A restrained weak Roman dominating function with weight γrr(G), is called
a γrr-function.

In the following, we provide a discussion on the restrained weak Roman domi-
nation number of graphs. In the sequel, we only consider graphs G = (V,E) that
are simple and connected. Further, we denote the diameter of G by diam(G) and
the degree of a vertex v ∈ V by deg(v).
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2. Some Properties of the Restrained weak Roman Domination Number
of a Graph

In the discussion that follow, the graph K1 is considered as the star graph K1,n−1
for n = 1. It is also considered as the caterpillar graph, with exactly one vertex on
the spine and no pendant vertices. A star graph is considered as a caterpillar with
exactly one vertex on the spine. We make the following observations.

Observation 2.1. For any graph G of order n, γrr(G) = n if and only if G is a
star.

Observation 2.2. There exists no graph G of order n such that γrr(G) = n− 1.

Observation 2.3. If G contains a cycle, then γrr(G) ≤ n− 2.

Observation 2.4. If G is not the star and has a vertex v ∈ V (G) such that
deg(v) ≥ 2, then γrr(G) ≤ n− 2.

Theorem 2.1. For any graph G, γr(G) ≤ γrr(G) ≤ γrR(G).
Proof. Every γrr-function is a WRDF. So, γr(G) ≤ γrr(G). Similarly, every γrR-
function is an rWRDF. Consequently, γrr(G) ≤ γrR(G). So, γr(G) ≤ γrr(G) ≤
γrR(G).

Theorem 2.2. If a graph G = (V,E) of order n contains an induced path of length
6, then γrr(G) < n− 2.
Proof. Let the path of length 6 be v1, v2, . . . , v7. Define f : V → {0, 1, 2} by
V0 = {v2, v3, v5, v6}, V2 = {v4} and V1 = V \(V0 ∪ V2). Then f defines an rWRDF
on G with weight w(f) = n− 3 < n− 2. So, γrr(G) < n− 2.

Corollary 2.1. If G is a graph with diam(G) > 5, then γrr(G) < n− 2.
Proof. If diam(G) > 5, G contains a path of length 6 in G. The result immediately
follows from Theorem 2.2.

3. Restrained weak Roman Domination Number of Certain Graphs

In this section, we provide the γrr-value of certain well known classes of graphs
namely, complete graphs, complete bipartite graphs, paths and cycles.

Observation 3.1. For complete graphs Kn, γrr(Kn) =

{
2, if n = 2,
1, otherwise

.

The proof is trivial.

Theorem 3.1. For the complete bipartite graph Km,n, that is not a cycle or

a star, γrr(Km,n) =

{
4, if m > 3, n > 3,
3, otherwise.

Proof. Let (X, Y ) be the bipartition of the complete bipartite graph Km,n, |X| =
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m, |Y | = n, X = {x1, . . . , xm}, Y = {y1, . . . , yn}.
Case 1. m > 3, n > 3.
Define f : V → {0, 1, 2} by f(x) = 2, f(y) = 2, for some x ∈ X, y ∈ Y and
f(z) = 0 for each z ∈ V \{x, y}. This defines an optimal rWRDF on Km,n and
γrr(Km,n) = 4, m > 3, n > 3.
Case 2. m ≤ 3, n ≥ 3.
Without loss of generality, let |m| ≤ |n|. If m = 2, n ≥ 3, the function f :

V → {0, 1, 2} defined by f(w) =


2, if w = x1

1, if w = y1

0, otherwise

, is a γrr-function on K2,n, n ≥ 3.

So, γrr(K2,n) = 3, n ≥ 3. If m = 3, n ≥ 3, the function f : V → {0, 1, 2}

defined by f(w) =

{
1, if w ∈ {x1, x2, y1}
0, otherwise

, is a γrr-function on K3,n, n ≥ 3. So,

γrr(K3,n) = 3, n ≥ 3. Hence, if m ≤ 3, n ≥ 3, then, γrr(K3,n) = 3.

Theorem 3.2. For paths Pn, n ≥ 1, n 6= 3,

γrr(Pn) =

{
2
⌊
n
4

⌋
+ r, n ≡ r (mod 4) and r 6= 3

2
⌊
n
4

⌋
+ 2, otherwise

and γrr(P3) = 3.
Proof. For n ≤ 3, γrr(Pn) = n, since V0 = V2 = φ and V1 = V (Pn). For
n = 4, γrr(Pn) = 2, since V0 = {v2, v3}, V1 = {v1, v4} and V2 = φ. For n = 5,
γrr(Pn) = 3, since V0 = {v2, v3}, V1 = {v1, v4, v5} and V2 = φ, γrr(P6) = 4 with
V0 = {v2, v3}, V1 = {v1, v4, v5, v6} and V2 = φ, and when n = 7, γrr(Pn) = 4 with
V0 = {v2, v3, v5, v6}, V1 = {v1, v7} and V2 = {v4}. So, for 1 ≤ n ≤ 7, n 6= 3, we
have,

γrr(Pn) =

{
2
⌊
n
4

⌋
+ r, n ≡ r (mod 4) and r 6= 3

2
⌊
n
4

⌋
+ 2, otherwise

γrr(P3) = 3. (1)

For the general case, we proceed as follows. Let Pn : v1v2 . . . vn be a path on n
vertices.
By division algorithm, for any n, we have, n = 4k + t, where 0 ≤ t < 4. We shall
prove the theorem by induction on k =

⌊
n
4

⌋
, for each of the cases t = 0, 1, 2, 3.

Case 1. t = 0, 1, 2. If t = 0, then n = 4k.
Initially, when k = 2, we have n = 8. The function f : V → {0, 1, 2} defined by,
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f(vi) =

{
1, for i ≡ 0, 1 (mod 4),
0, otherwise

, defines a γrr-function on Pn. Thus, γrr(P8) =

4 = 2
⌊
n
4

⌋
+ n (mod 4), when n = 8. Hence the theorem is true in the initial case.

Now assume that the theorem is true for all k′ < k. That is the theorem is true for
all paths of order 4k′, k′ < k. We shall prove the theorem for paths Pn, n = 4k.
Consider the subgraph of H induced by the vertices v1, . . . , v4k−4. H is a path of

order 4(k − 1). By induction hypothesis, since k − 1 < k, γrr(H) = 2
⌊
4(k−1)

4

⌋
=

2(k − 1). Let f ′ be the γrr-function defined on H. Then, f : V (Pn) → {0, 1, 2}
defined by f(v) = f ′(v), if v ∈ V (H), f(v4k−3) = f(v4k) = 1, f(v4k−2) = f(v4k−1) =
0 defines a γrr-function on Pn. So, γrr(Pn) = 2(k − 1) + 2 = 2k = 2

⌊
4k
4

⌋
=⌊

4k
4

⌋
+ (4k) (mod 4) = 2

⌊
4k
4

⌋
= 2

⌊
4k
4

⌋
+ n (mod 4). Hence the theorem is true for

all paths Pn of order n, n (mod 4) = 0.
The cases t = 1 and t = 2 can similarly be proved.

Case 2. t = 3.
In this case, n = 4k + 3. Initially, when k = 2, we have n = 11. Then, f : V →
{0, 1, 2} defined by f(vi) = 1, for i = 1, 4, 5, 11, f(vi) = 0 for i = 2, 3, 6, 7, 9, 10 and
f(v8) = 2 is a γrr-function on P11. Thus, γrr(P11) = 6 = 2b2c + 2 = 2

⌊
11
4

⌋
+ 2 =

2
⌊
n
4

⌋
+ 2. Hence the theorem is true in the initial case. Now assume that the

theorem is true for all paths of order 4k′+3, where k′ < k. Let us prove the theorem
for Pn, where n = 4k + 3. Let H be the subgraph of Pn induced by v1, . . . , vn−4.
By hypothesis, γrr(H) = 2

⌊
n−4
4

⌋
+2. Let f ′ be the γrr-function defined on H. The

function f : V (Pn)→ {0, 1, 2} defined by f(vi) = f ′(vi), 1 ≤ i ≤ n−11, f(vn−10) =
f(vn−7) = 1, f(vn−9) = f(vn−8) = 0, f(vi) = f ′(vi−4), n− 6 ≤ i ≤ n defines a γrr-
function on Pn. So, γrr(Pn) = γrr(H)+2 = 2

⌊
n−4
4

⌋
+2+2 = 2

⌊
n−4
4

⌋
+4 = 2

⌊
n
4

⌋
+2.

Hence theorem is true for n = 4k + 3.
By induction, the theorem is true, also in this case.
In view of (1), case 1 and case 2, the theorem is proved completely.

Theorem 3.3. For cycles Cn, n ≥ 4,

γrr(Cn) =

{
2
⌊
n
4

⌋
+ r, if n ≡ r (mod 4) and r 6= 3,

2
⌊
n
4

⌋
+ 2, otherwise

and γrr(C3) = 1.
Proof. We have γrr(C3) = γrr(K3) = 1.
Let n > 3.
Cycles Cn are obtained from paths Pn by joining the pendant vertices of Pn by an
edge. Let v1, . . . , vn be a path on n vertices. Then the cycle on these n vertices
is obtained by joining v1 and vn by an edge. Clearly, the γrr-labeling of Pn would
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define an rWRDF on Cn. So γrr(Cn) ≤ γrr(Pn). If possible, let γrr(Cn) < γrr(Pn).
Let v be a vertex on Cn with positive weight. If there is a vertex v with weight 1,
then v is incident with an edge e = vw, such that the weight of w is 1. Removing
the edge e from Cn produces a path P of length n. But removing the edge e
from Cn would induce an rWRDF function on P with weight γrr(Cn) < γrr(Pn),
a contradiction. If there is no vertex with label 1, then we can find a path on
v, x, y, z on Cn such that f(v) = f(z) = 2, f(x) = f(y) = 0. Removing the edge
xy from Cn produces a path Q of length n. Defining g : V (Q) → {0, 1, 2} by
g(v) = g(x) = g(y) = g(z) = 1, g(w) = f(w) for each w ∈ V \{v, x, y, z} defines
an rWRDF on Q with weight γrr(Cn) < γrr(Pn), a contradiction. In any case,
γrr(Cn) = γrr(Pn).

We note that for any graph G that is not a star, γrr(G) ≤ n−2. This is evident
from Observation 2.1 and Observation 2.2. So, if G is any graph that is not a star
then, γrr(G) ≤ n − 2. Hence characterizing those graphs whose γrr-value is equal
to n− 2 assumes importance.

4. Trees of order n and γrr-value n− 2

We shall now characterize those trees whose γrr-value is two less than their
order.

Theorem 4.1. For any tree T of order n, γrr(T ) = n − 2 if and only if T is a
caterpillar with spine length either 2, 3 or 4, diam(T ) > 2 and all the internal
vertices of the spine are of degree 2.
Proof. In view of Corollary 2.1 to Theorem 2.2, we have to prove the theorem only
for trees T with diam(T ) ≤ 5. If diam(T ) = 0, T = K1 and so γrr(T ) = 1 6= n− 2.
If diam(T ) = 1, T = K2 and so γrr(T ) = 2 6= n− 2. If diam(T ) = 2, T is the star
graph K1,n−1 and so γrr(T ) = n > n−2. If diam(T ) = 3, T is a caterpillar with two
vertices on the spine, none of which is an internal vertex and γrr(T ) = n− 2. Now
let diam(T ) = 4. Then the center of T has a single vertex v. There are at least
two vertices x, y adjacent to v, each of which is a support vertex. It v has more
than two vertices adjacent to it, then the function f : V → {0, 1, 2} defined by
f(v) = f(x) = f(y) = 0, f(w) = 1 if w ∈ V \{v, x, y} defines an rWRDF on T with
weight w(f) = n−3, consequent to which it follows that γrr(T ) ≤ n−3 < n−2. So
deg(v) = 2. Then T is a caterpillar with spine length 3, with its only internal vertex
having degree 2. If T is such a graph, then, γrr(T ) = n − 2. Now, assume that
diam(T ) = 5. Then the center of T has two vertices u, v. Each of these vertices is
adjacent to at least one vertex that is a support vertex. Let u be adjacent to the
support x and v be adjacent to the support y. We claim that deg(u) = deg(v) = 2.
If one of them, say u has deg(u) > 2, then u is adjacent to a vertex w that is
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different from x and v. Define f : V → {0, 1, 2} by f(u) = f(x) = f(v) = 0,
f(z) = 1 if z ∈ V \{u, x, v}, defines an rWRDF on T with weight w(f) = n − 3.
So, γrr(T ) ≤ n − 3 < n − 2. The same is true if deg(v) > 2 or deg(u) > 2 and
deg(v) > 2. Then T is a caterpillar with spine length 4, with exactly two internal
vertices, both of which have degree 2. If T is such a graph, then γrr(T ) = n− 2.

5. Cyclic graphs with order n and γrr-value n− 2

In view of Observation 2.1 and Observation 2.2, there are no cyclic graphs of
order n with γrr-value either n or n−1. We shall now characterize the cyclic graphs
whose γrr-value is two less than their order. In view of Corollary 2.1, we have to
only consider those cyclic graphs with diameter < 6.

Theorem 5.1. If G contains a cycle of length 5 or 6 with a chord, then γrr(G) <
n− 2.
Proof. Let u1, . . . , u5, u1 be a cycle of length 5 contained in G with a chord.
Without loss of generality, let u1 and u3 be adjacent in G. Define f : V → {0, 1, 2}
by V0 = {u2, u3, u4}, V1 = V \V0, and V2 = φ. This defines an rWRDF on G of
weight w(f) = n− 3 < n− 2. So, γrr(G) < n− 2.

On the other hand, let u1, . . . , u6, u1 be a cycle of length 6 contained in G with a
chord. This chord either transforms the given cycle into one that will contain a
triangle and a cycle of length 5 or into one that will contain two cycles of length 4
each.
Case 1. The chord transforms the cycle of length 6 into one that will contain a
triangle and a cycle of length 5.

Without loss of generality, let the triangle be on the vertices u1, u2 and u3. Define
the function f : V → {0, 1, 2} by V1 = {u2}, V2 = {u5} and V0 = V \(V1∪V2). Then
f defines an rWRDF on G of weight w(f) = n− 3. So, γrr(G) ≤ n− 3 < n− 2.
Case 2. The chord transforms the cycle of length 6 into one that will contain two
cycles of length 4 each.

Without loss of generality, let the chord join the vertices u1 and u4. Define the
function f : V → {0, 1, 2} by V0 = {u3, u4, u5}, V1 = V \V0, V2 = φ. Then f defines
an rWRDF on G of weight w(f) = n− 3. So, γrr(G) ≤ n− 3 < n− 2.

Lemma 5.1. If G is a graph that contains a cycle of length k ≥ 7 properly, then
γrr(G) < n− 2.
Proof. Under the hypothesis, G contains a path of length 6. So by Theorem 2.2,
it follows that γrr(G) < n− 2.

Lemma 5.2. If G is a cyclic graph such that γrr(G) = n − 2, then G does not
contain a cycle of length k ≥ 7 or a cycle of length 5 or 6 with a chord.
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Proof. The result follows from Theorem 5.1 and Lemma 5.1.
Owing to the small order and size of the graphs involved, the truth of the

following Lemmas, Lemma 5.3 to Lemma 5.6 can be easily verified.

Lemma 5.3. If G is a cyclic graph with diam(G) = 1 or 2, then γrr(G) = n − 2
if and only if G is one of the following graphs.

1. The graph K3.

2. A K3 with at least one pendant vertex attached to any one of the vertices on
it.

3. A C4 or a C4 with a single chord or a C4 with a single chord with at least
one pendant vertex attached to one end of the chord.

4. The graph C5.

Proof. There is only one cyclic graph G with diam(G) = 1, namely K3, for which
γrr(G) = n − 2. Amongst all cyclic graphs with diam(G) = 2, only the graphs
mentioned in 2, 3 and 4 of the hypothesis satisfy γrr(G) = n− 2.

Lemma 5.4. If G is a cyclic graph with diam(G) = 3, then γrr(G) = n− 2 if and
only if G is one of the following graphs.

1. A K3 with at least one pendant vertex attached to any two vertices on it.

2. A C4 with at least one pendant vertex attached to one of the vertices on it.

3. A C4 with a chord and at least one pendant vertex attached to either ends of
the chord.

4. The graph C6.

Proof. Amongst all the cyclic graphs G with diam(G) = 3, only the graphs men-
tioned in 1, 2, 3 and 4 of the hypothesis satisfy γrr(G) = n− 2.

Lemma 5.5. If G is a cyclic graph with diam(G) = 4, then γrr(G) = n− 2 if and
only if G is the graph obtained from C4 by attaching at least one pendant vertex to
each of two non-adjacent vertices on it.
Proof. Amongst all the cyclic graphs with diam(G) = 4, only the graphs men-
tioned in the hypothesis of the lemma satisfy γrr(G) = n− 2.

Lemma 5.6. If G is a cyclic graph with diam(G) = 5, then γrr(G) < n− 2.
Proof. None of the cyclic graphs G with diam(G) = 5 satisfy γrr(G) = n− 2 and
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hence γrr(G) < n− 2, by Observation 2.3.

Theorem 5.2. If G is a cyclic graph, then γrr(G) = n− 2 if and only if G is one
of the following graphs.

1. The graph Cn, 3 ≤ n ≤ 6.

2. A graph obtained from C3 by attaching at least one pendant vertex to each of
a maximum of two vertices on it.

3. A graph obtained from C4 by attaching at least one pendant vertex to one
vertex or to each of two non-adjacent vertices on it.

4. A C4 with a single chord or a graph obtained from a C4 with a single chord, by
attaching at least one pendant vertex to one vertex or to each of two vertices
on it

Proof. The proof follows from Lemma 5.3 to Lemma 5.6.

6. Conclusion
In this paper, we have characterized graphs for which the restrained weak Ro-

man domination number is less than their orders by two. We have also explicitly
obtained the restrained weak Roman domination number of certain classes of graph
in terms of their orders.
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